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Abstract Germination of wild-type (WT) tomato
(Lycopersicon esculentum Mill.) seed is inhibited by
mannitol (100–140 mM) in light, but not in darkness,
suggesting that light amplifies the responsiveness of the
seed to osmotic stress (M. Fellner, V.K. Sawhney (2001)
Theor Appl Genet 102:215–221). Here we report that
white light (W) and especially blue light (B) strongly
enhance the mannitol-induced inhibition of seed germi-
nation, and that the effect of red light (R) is weak or nil.
The inhibitory effect of mannitol could be completely
overcome by fluridone, an inhibitor of abscisic acid
(ABA) biosynthesis, indicating that mannitol inhibits
seed germination via ABA accumulation in seeds. The
inhibition of WT seed germination by exogenous ABA
was also amplified by W or B, but not by R. In a re-
cessive, ABA-overproducing, 7B-1 mutant of tomato,
seed germination and hypocotyl growth were resistant to
inhibition by mannitol or exogenous ABA, both in W or
B. Experiments with fluridone suggested that inhibition
of hypocotyl growth by W or B is also partially via ABA
accumulation. De-etiolation in the mutant was especially
less in B compared to the WT, and there was no dif-
ference in hypocotyl growth between the two genotypes
in R. Our data suggest that B amplifies the responsive-
ness of tomato seeds and hypocotyls to mannitol and
ABA, and that W- or B-specific resistance of the 7B-1
mutant to osmotic stress or ABA is a consequence of a
defect in B perception or signal transduction.
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Introduction

In field conditions, plants are often exposed to various
abiotic stresses such as dehydration, low temperature,
and high salinity. Since the effects of such factors are due
at least in part to impaired water absorption and
transport, they are considered to be different forms of
osmotic stress (Ryu et al. 1995; Xiong et al. 1999).
Abiotic stresses substantially reduce crop plant pro-
ductivity (Epstein et al. 1980). Therefore, an under-
standing of the underlying mechanisms involved in the
plant responses to abiotic stresses is essential to solve
this important agronomic problem.

One possible mechanism by which plants resist abi-
otic stresses is via the accumulation of abscisic acid
(ABA; Goldbach and Michael 1976; Mäntylä et al.
1995). The pivotal role of ABA in plant responses is
shown in ABA-deficient mutants that are impaired in
tolerance to abiotic stresses (Koornneef et al. 1982; Bray
1988; Heino et al. 1990; Chen and Plant 1999), and by
the reversal of this defect with exogenous ABA (Heino
et al. 1990). Also, in many species ABA treatment makes
plants more resistant to abiotic stresses (Chen and Gusta
1983; LaRosa et al. 1987), and several ABA-response
genes are induced in response to an abiotic stress (Hahn
and Walbot 1989; Yamagushi-Shinozaki et al. 1989).

In plant tissues, the levels of several hormones, in-
cluding ABA, are altered by light conditions (Kraepiel
and Miginiac 1997). Feldman et al. (1985) and Leopold
and La Favre (1989) showed that red light (R) treatment
leads to an increase in ABA in maize roots. In contrast, R
decreases endogenous ABA levels in germinating lettuce
seeds (Toyomasu et al. 1994). Similarly, R-induced neg-
ative regulation of ABA levels was shown in vegetative
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tissues of Lemna and Arabidopsis (Weatherwax et al.
1996, 1998). In a phytochrome-deficient mutant of
Nicotiana the increase in endogenous ABA levels was
related to R-controlled ABA degradation (Kraepiel et al.
1994).

The level of endogenous ABA is also regulated by
blue light (B). Blue-light-induced inhibition of hypocotyl
elongation in Lactuca corresponded with high concen-
trations of ABA (Volmaro et al. 1998) and, in Prunus, B
resulted in increased endogenous ABA compared with R
treatment (Baraldi et al. 1995). When B was combined
with R or far-red light (FR), the ABA level declined.
These results suggest that B and R may interact with
each other in the modulation of endogenous ABA in
plant tissues. The fact that light has a role in the
biosynthesis/metabolism of ABA raises the question of
the role of light in plant responses to abiotic stresses. It
has been suggested that light may affect the sensitivity of
tissues to plant hormones, such as gibberellins (Reed
et al. 1996) or brassinosteroids (Szerkes et al. 1996).
However, to the best of our knowledge, no information
is available on whether light affects tissue sensitivity to
osmotic stress and ABA.

We recently reported that in white light (W) under
long days (LDs), seed germination in the 7B-1 mutant of
tomato is resistant to abiotic stresses, including osmotic,
salt and low-temperature stresses (Fellner and Sawhney
2001). We also showed that in LDs, 7B-1 seedlings ex-
hibit reduced de-etiolation of hypocotyls, and that the
mutant hypocotyls contain elevated levels of endoge-
nous ABA, relative to the WT (Fellner et al. 2001). Here
we report that in continuous W or B, but not in R, the
7B-1 mutant exhibits, relative to the WT, enhanced re-
sistance to mannitol and exogenous ABA as evidenced
by increased seed germination and relatively greater
hypocotyl growth. The results presented suggest that in
the 7B-1 mutant of tomato there is a defect in B per-
ception or signal transduction.

Materials and methods

Plant material and growth conditions

The 7B-1 mutant was isolated as a male-sterile line of tomato
(Lycopersicon esculentum Mill., background, cv. Rutgers ; Sawhney
1997). For all experiments, 7B-1 and wild-type (WT) seeds were
obtained from plants grown under a short-day (SD) photoperiod
(8 h light/16 h dark) in a growth chamber with a temperature re-
gime of 25 �C light/23 �C dark. Light was provided by fluorescent
tubes (F72T12/CW/VHO; Sylvania, USA) and incandescent bulbs
(Long Life 7500 h; Litemor, Canada) at a photon flux density
(PFD) of 90–200 lmol m–2 s–1.

Germination tests

Seeds were surface-sterilized by soaking in 50% (v/v) Javex-5
solution (3% sodium hypochlorite; Colgate-Palmolive Canada,
Toronto, Canada) for 25 min, and rinsed extensively with sterile
distilled water. 7B-1 and WT seeds were germinated 30–40 seeds
per Petri dish. The basal medium (BM) contained Murashige and
Skoog (1962) salts, 1% (w/v) sucrose, 1 mM Mes, and 0.7% (w/v)

agar (pH adjusted to 6.1 by KOH before autoclaving) with or
without different concentrations of mannitol (Fisher Scientific, Fair
Lawn, N.J., USA), abscisic acid [(±)-cis,trans-ABA; Sigma,
St. Louis, Mo., USA), or fluridone (1-methyl-3-phenyl-5-[3-triflu-
oromethyl-(phenyl)]-4(1H)-pyridinone; Eli Lilly, Indianapolis,
Ind., USA). Mannitol, ABA, as well as fluridone were added to the
medium by sterile filtration (0.22 lm Millex-GS filter unit;
Millipore Co., Bedford, Mass., USA) after autoclaving. Petri dishes
with seeds were placed in an incubator set at 25 �C, either in
darkness or in continuous W, B, R, or FR (for filters used see
below). Seed germination, defined as radicle protrusion, was scored
from 2–20 days after sowing.

Hypocotyl growth

One day after germination in the dark, 7B-1 and WT seeds were
transferred either to new BM in Petri dishes, or to BM supplemented
with ABA, fluridone or mannitol. The dishes with seeds were ver-
tically aligned and then placed under W, B, R, or FR, or kept in the
dark. After 5–12 days, the hypocotyl length was measured.

Light sources

White light was provided by white fluorescent tubes (F20T12/CW;
Sylvania) with a PFD of 25–40 lmol m–2 s–1. Blue light was
provided by filtering light from a white fluorescent tube through
three layers of blue Roscolux membrane (#83; Rosco, Port Chester,

N.Y., USA) with a PFD of 4 lmol m–2 s–1. Red light was provided
by filtering light from a white fluorescent tube through three layers
of red Roscolux membrane (#27) with a PFD of 5 lmol m–2 s–1.
Far-red light was provided by filtering light from a 500-W incan-
descent lamp (Philips Lighting Company, Somerset, N.J., USA)
through a Plexiglas FR filter (FRF 700; Westlake Plastic Company,
Lenni, Pa., USA) with PFD 13 lmol m–2 s–1. PFDs of W, B and R
were measured with a quantum photometer (model Li-185B; Li-
Cor, Lincoln, Neb., USA) and PFDs of FR were measured with
portable spectroradiometer (model LI-1800; Li-Cor).

Results

Seed germination

In the control, i.e. on BM, there were no major differ-
ences in the germination rate and percent germination
between the WT and 7B-1 mutant seeds in the dark,
W, R, or in B (Fig. 1a–d). FR almost completely in-
hibited seed germination in WT and in 7B-1 (Fig. 1e).
However, when seeds were transferred from FR to W or
the dark, germination was fully restored in both geno-
types, 4–5 days after the transfer (Fig. 1e).

We previously reported that the osmotica mannitol
and polyethylene glycol (PEG) inhibit seed germination
in the WT and in the 7B-1 mutant in light (in LDs), and
that 7B-1 seeds are resistant to the inhibitory effect of the
two osmotica in light (Fellner and Sawhney 2001). Here
we examined the resistance of mutant seeds to mannitol
in different parts of the light spectrum. As shown earlier
(Fellner and Sawhney 2001), mannitol (100–140 mM)
did not inhibit germination in the dark in either WT or
7B-1 seeds . Light amplified the responsiveness of to-
mato seeds to mannitol but to a different extent in WT
and 7B-1. Under W, mannitol (100–140 mM) inhibited
WT seed germination by approximately 50% to almost

676



100%, compared to the control (Fig. 2a). In contrast, seed
germination in 7B-1was unaffected at low (100 mM), and
reduced to 50% in high (140 mM), mannitol concentra-
tions (Fig. 2a). Red light had aweak effect on theWT seed
germination response tomannitol, although at 140 mM it
strongly inhibited it and the effect was less in the 7B-1
mutant (Fig. 2b). The most striking difference between
WT and 7B-1 responses to mannitol was observed in B.
Mannitol strongly inhibited WT seed germination,
whereas 7B-1 seeds were almost completely insensitive to
mannitol (Fig. 2c).

A comparison of WT and 7B-1 seed germination in
the dark and B in the presence of different concentra-
tions of mannitol is shown in Fig. 3a.

We then examined the possibility that mannitol-
xinduced inhibition of germination in W or B is caused
by ABA accumulation. WT and 7B-1 were germinated
in the presence of mixtures of mannitol and fluridone
(10 lM), an inhibitor of ABA biosynthesis (Gamble and
Mullet 1986; Saab et al. 1990; Xu and Bewley 1995).
Whatever the light quality, fluridone completely restored
germination from the inhibitory effect of mannitol in
both the genotypes (Figs. 2, 3b).

Next we examined the effects of exogenous ABA on
seed germination with respect to light quality. In the
dark as well as in W, exogenous ABA inhibited germi-
nation in both WT and 7B-1 seeds, although inhibition
was greater in light than in darkness (Fig. 4a, b). In
light, the extent of ABA-induced inhibition was depen-
dent on light quality. In R, as in the dark, WT and 7B-1
showed similar sensitivity to ABA with 50% inhibition
induced by approximately 6·10–6 to 1·10–5 M ABA
(Fig. 4a, c). In continuous W, WT and 7B-1 seeds re-
sponded similarly to ABA (Fig. 4b) although less ABA
was needed for 50% inhibition than in darkness or R
(Fig. 4a, c). The major difference between WT and 7B-1
seeds occurred in B, where germination of 7B-1 seeds
was strongly resistant to ABA relative to the WT, except
at high (10–5 M) concentration (Fig. 4d).

Hypocotyl elongation

Blue-light-specific resistance of 7B-1 mutant seed ger-
mination to mannitol or ABA led us to hypothesize that
7B-1 seedling growth may also be less sensitive to B.

Fig. 1 Kinetics of seed germi-
nation in WT tomato (Lycop-
ersicon esculentum) and the
7B-1mutant on BM in darkness
(a), W (b), R (c), B (d) or FR
(e). For each genotype and light
condition, at least 30 seeds were
scored for germination. Each
value represents the mean ± SE
of three independent experi-
ments. In the case of FR (e),
germination of seeds after
transfer from FR to darkness
represents data from one
experiment

677



Therefore, we examined the growth of WT and mutant
hypocotyls reared on a BM in various light conditions.
In the dark, there was no difference between 7B-1 and
WT hypocotyls, and R inhibited hypocotyl growth to a
similar extent in both genotypes (Fig. 5a). In FR, 7B-1
hypocotyls showed slightly less de-etiolation, i.e. inhi-
bition of growth, than those of the WT (Fig. 5a).
However, de-etiolation of 7B-1 hypocotyls, compared to
WT, was relatively much less in W, and especially in B
(Fig. 5a).

We previously reported that, in W, fluridone
(0.1–1 lM) significantly stimulates hypocotyl elongation
in WT but not in 7B-1 seedlings (Fellner et al. 2001).
Fluridone did not affect hypocotyl growth in WT or
7B-1 seedlings in the dark, R or FR (data not shown).
However, under B, distinct differences occurred between
WT and 7B-1 hypocotyl growth in the presence of
fluridone. In the WT, fluridone stimulated hypocotyl
growth but in the mutant it was unaffected (Fig. 5b).

The resistance of the mutant hypocotyl to B-induced
inhibition led us to investigate the responsiveness of
hypocotyl growth to mannitol and ABA under different
light conditions. Mannitol (140 mM) inhibited hypoco-
tyl growth in tomato seedlings in the dark as well as in
light and, as in seed germination, WT and 7B-1 hy-
pocotyls exhibited similar responses in darkness or R
(Fig. 6a, b). However, mannitol-induced inhibition of
mutant hypocotyl growth in B was relatively much less
(approx. 17%) compared with the WT (approx. 30%;
Fig. 6c). Similarly in B, mutant hypocotyls showed less
sensitivity to the inhibitory effect of exogenous ABA
than the WT. At 3 or 5 lM ABA, WT hypocotyls were

Fig. 3 Effect of darkness or B (a) or fluridone (10 lM) (b) on the
germination of seeds of WT and 7B-1 mutant tomato in the
presence of different concentrations of mannitol. Each treatment in
a represents germination after 10 days and in b after 7 days of
sowing. Values represent mean seed germination ± SE of three
independent experiments

Fig. 2 Germination of seeds of WT and 7B-1 mutant tomato in the
presence of mannitol with or without fluridone (FLU; 10 lM) in W
(a), R (b) or B (c). For each genotype and light condition at least 30
seeds were scored for germination 10 days after sowing. Values
represent mean ± SE of three independent experiments
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approx. 40% shorter than the control seedlings, whereas
at the same concentrations, the inhibition in 7B-1
mutant hypocotyls was approximately 16% (Fig. 7).

Discussion

In some systems, including tomato, plant tissues respond
to abiotic stresses by increasing endogenous ABA
(Goldbach and Michael 1976; Daie and Campbell 1981;
Chandler and Robertson 1994; Mäntylä et al. 1995). In
WT and 7B-1 mutant tomato seeds, the ability of fluri-
done to overcome the inhibitory effect of mannitol on
germination (Fig. 2) indicates that high osmoticum-
induced inhibition of germination is via accumulation of
endogenous ABA. We previously reported that various
abiotic stresses inhibit seed germination in tomato in
light (in LDs), but not in darkness, indicating that light
somehow amplifies the inhibitory effect of the abiotic
stress (Fellner and Sawhney 2001). In this study, we re-
port that continuous W or B strongly amplifies the ability
of mannitol to inhibit germination in WT seeds, and that
B has a stronger effect than W (Figs. 2, 3). In contrast, R
had a weak or nil effect on mannitol-induced inhibition.

One possible mechanism by which B may amplify the
inhibition of germination by mannitol in WT tomato
seeds is that it stimulates the mannitol-induced ABA
accumulation in seeds. This is supported by the obser-
vation that the inhibition of germination in WT seeds by
exogenous ABA is also maximal in B compared to
darkness or R (Fig. 4). Blue light has been shown to
increase the level of endogenous ABA in some systems
(Baraldi et al. 1995) and R is positively involved in ABA
degradation (Kraepiel et al. 1994). Thus, it is possible
that similar mechanisms operate in tomato seeds.

We earlier reported that seed germination in the 7B-1
mutant is strongly resistant to various abiotic stresses in
comparison to the WT in W (in LDs), but not in the
dark (Fellner and Sawhney 2001). Here, we show that
the resistance of 7B-1 seeds to mannitol or exogenous
ABA is specifically pronounced in B. High germination
in 7B-1 seeds in B in the presence of mannitol or

Fig. 5 Hypocotyl length in WT and 7B-1 seedlings of tomato
grown on BM in the dark, W, B, R or FR (a), or grown in B in the
presence of fluridone (10 lM) (b). Length of hypocotyl was
measured 7 days after germination. Values represent mean ± SE
of 60 seedlings from three independent experiments, and in the case
of B in a, 80 seedlings were measured from four independent
experiments

Fig. 4 Germination of WT and
7B-1 mutant tomato seeds in
the presence of exogenous ABA
in the dark (a), W (b), R (c) or B
(d). For each genotype and light
condition at least 30 seeds were
scored for germination 9 days
after sowing. Values represent
mean germination ± SE of
three independent experiments
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exogenous ABA, at concentrations inhibitory for WT
seeds, could be due to reduced level of endogenous ABA
in 7B-1 seeds. Analysis of endogenous ABA in WT or
7B-1 seeds was not performed. However, our earlier
results suggested that 7B-1 seeds contain more, not less,
endogenous ABA than WT seeds (Fellner at al. 2001).
Thus, it is likely that B regulates the responsiveness of
WT seeds to mannitol and ABA by increasing seed
sensitivity to ABA. This suggestion is supported by data
from experiments on hypocotyl growth.

Hypocotyl growth in the 7B-1 mutant exhibited re-
duced de-etiolation, relative to the WT, in W or B, but
not in R or FR (Fig. 5a), indicating that 7B-1 hypoco-
tyls are specifically less sensitive to B. Earlier we showed
that 7B-1 hypocotyls contain higher levels of endoge-
nous ABA than the WT in W (Fellner et al. 2001).
Analysis of endogenous ABA in WT and 7B-1 hy-
pocotyls grown under B has not been performed.

However, in B as in W, fluridone, an inhibitor of ABA
biosynthesis, stimulated hypocotyl growth in the WT
but not in 7B-1 (Fig. 5b). This suggests that endogenous
ABA in B-grown mutant hypocotyls is also at a higher
level than in WT, and that ABA is involved, at least
partially, in W- and B-induced inhibition of hypocotyl
growth. This is consistent with the observation that ex-
ogenous ABA inhibits hypocotyl elongation (Fig. 7;
Fellner et al. 2001). However, even though 7B-1 hy-
pocotyls contain an elevated level of endogenous ABA
in W, and possibly in B, they show reduced de-etiolation
and less growth inhibition by mannitol or ABA in W or
B (Figs. 6, 7). Taken together, the data indicate strongly
that in the 7B-1 hypocotyl, sensitivity to endogenous
ABA is reduced in B or W, as compared to WT, and is
consistent with the deduced lower sensitivity to B of
7B-1 mutant seed germination. Thus, we propose that
B-specific resistance of 7B-1 seed germination and
hypocotyl elongation to osmotic stress and ABA is
primarily due to a defect in B perception or signaling.

In Fig. 8, we present a working model which attempts
to explain the mechanisms by which B signaling affects
tissue sensitivity to ABA in seed germination and
hypocotyl growth. It is proposed that, in the WT, B
increases tissue sensitivity to ABA (receptor X), which
in turn results in a reduction in the endogenous ABA
level. ABA is perceived by receptor X, and the signal is
further transduced with negative effects on the expres-
sion of hydrolytic-enzyme genes induced by gibberellic
acid, resulting in the inhibition of seed germination.
ABA is also perceived by another receptor, Y (not
directly influenced by B), and the signal induces
expression of genes involved in the biosynthesis of
osmolytes needed for osmotic tolerance; in the WT, the
expression is reduced and there is less tolerance to the
osmotic stress. In the 7B-1 mutant, a defect in B per-
ception/transduction results in less sensitivity to B and
consequently reduced sensitivity of receptor X to ABA
(fewer receptors or their modification), and high levels of
endogenous ABA. Thus, there is less inhibition of the
gibberellin-induced pathway in the 7B-1 mutant and less
inhibition of germination. At the same time, high levels
of ABA in 7B-1 seeds would bind to more Y receptors

Fig. 7 Hypocotyl lengths of 7-day-old WT and 7B-1 tomato
seedlings grown in the presence of ABA (3 lM or 5 lM) under B.
Values represent mean ± SE of 60 seedlings from three
independent experiments

Fig. 6 Hypocotyl lengths in WT and 7B-1 seedlings of tomato
grown in the presence or absence of mannitol (140 mM) in the dark
(a), R (b) or B (c). Values represent mean ± SE of 60 seedlings
from three independent experiments. Hypocotyl length was
measured after 5 days (in darkness) or 7 days (in R or B) of seed
germination
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resulting in enhanced expression of genes involved in
osmolyte production and, thus, increased tolerance to
osmotic stress. For WT hypocotyl growth, B-induced
increased sensitivity to ABA negatively affects hypocotyl
growth, and in the mutant reduced sensitivity to ABA
leads to increased hypocotyl growth.

To simplify the model, the effect of R in seed germi-
nation and hypocotyl growth is not included. In contrast
to B, R had a weak effect on the responsiveness of 7B-1
seeds to mannitol, indicating an interaction between R
and B in the induction of responsiveness to osmotic
stress. Thus, the 7B-1 mutant seems to be an interesting
system for the study of B and R interaction in the regu-
lation of ABA biosynthesis/metabolism and sensitivity.

In conclusion, we suggest that B increases tissue sen-
sitivity to ABA and that the 7B-1 mutant is less sensitive
to B than the WT. To our knowledge, this is the first
report showing that B amplifies the responsiveness of
seed germination and hypocotyl growth to mannitol or
ABA, and emphasizes the importance of B in the control
of plant responses to osmotic stress.
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